Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Quantum low-density parity-check (LDPC) codes are a promising family of quantum error-correcting codes for fault tolerant quantum computing with low overhead. Decoding quantum LDPC codes on quantum erasure channels has received more attention recently due to advances in erasure conversion for various types of qubits including neutral atoms, trapped ions, and superconducting qubits. Belief propagation with guided decimation (BPGD) decoding of quantum LDPC codes has demonstrated good performance in bit-flip and depolarizing noise. In this work, we apply BPGD decoding to quantum erasure channels. Using a natural modification, we show that BPGD offers competitive performance on quantum erasure channels for multiple families of quantum LDPC codes. Furthermore, we show that the performance of BPGD decoding on erasure channels can sometimes be improved significantly by either adding damping or adjusting the initial channel log-likelihood ratio for bits that are not erased. More generally, our results demonstrate BPGD is an effective general-purpose solution for erasure decoding across the quantum LDPC landscape.more » « less
-
Quantum low-density parity-check (QLDPC) codes have emerged as a promising technique for quantum error correction. A variety of decoders have been proposed for QLDPC codes and many utilize belief propagation (BP) decoding in some fashion. However, the use of BP decoding for degenerate QLDPC codes is known to have issues with convergence. These issues are typically attributed to short cycles in the Tanner graph and error patterns with the same syndrome due to code degeneracy. In this work, we propose a decoder for QLDPC codes based on BP guided decimation (BPGD), which has been previously studied for constraint satisfaction and lossy compression problems. This decimation process is applicable to both binary and quaternary BP and it involves sequentially freezing the value of the most reliable qubits to encourage BP convergence. We find that BPGD significantly reduces the BP failure rate due to non-convergence, achieving performance on par with BP with ordered statistics decoding and BP with stabilizer inactivation, without the need to solve systems of linear equations. To explore how and why BPGD improves performance, we discuss several interpretations of BPGD and their connection to BP syndrome decoding.more » « less
An official website of the United States government
